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Our Challenge: Teaching ancient mathematics 

using modern technology!

A talk in three parts:

Math inspired art and animation

Classroom Activities explored with technology

Number Theory’s relationship to technology
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Teacher, born in Alexandria 
Egypt about 325 BC.

Before 300 BC there are no 
complete math 
manuscripts.

Elements

About 2300 years old.

This text was the center of 
all mathematical 
teaching for over 2000 
years.

Stamp originates from the Maldives Islands
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Definitions- Statements conveying fundamental 

character- for example: Points, lines and 

planes.

Postulates- a fundamental principle that is 

assumed to be true. Postulates are axioms, ie

they are assumed to be true without proof.

Propositions – These are theorems. These come 

with proof.
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David Joyce

Clark University



Ancient Greek 

mathematician, best 

known for his 

theorem: 

Given any right 

triangle, the area of 

the square on the 

hypotenuse is equal 

to the sum of the 

areas of the squares 

on the other two 

sides.

a2 + b2 = c2
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To understand Euclid’s Proof, we need some 

explanation.

Let’s look at an animation.

Square.html
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Watch Euclid’s proof of the Pythagorean 

Theorem.

pyth1.html
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Watch:

pyth3.html
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pyth3.html


Watch:

pyth4.html
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pyth4.html
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1847
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The Greatest Common Divisor (gcd) is the 

largest positive integer that divides the 

numbers without a remainder.

Find the gcd(48, 21)
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The Euclidean Algorithm is an efficient method of calculating 

the greatest common divisor of two numbers. 

For any pair of positive integers a and b, we may find the 

gcd(a,b) by repeated use of division to produce a decreasing 

sequence of integers r1> r2 > … as follows:

a = bq1 + r1 0<r1<b

b = r1q2 + r2 0<r2<r1

r1 = r2q3 + r3 0<r3<r2...

We repeat this process until we get a remainder of zero. The 

last non-zero remainder is the gcd(a,b).
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Find the gcd(48, 21)

48 = (21) * (2) + 6

21 =  (6) * (3) + 3

6 =  (3) * (2) + 0

Three is the last non-zero remainder, so gcd(48, 21)= 3.
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Find the gcd(48, 21), geometrically

Watch:

euclidalg.html

Click to start and stop
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euclidalg.html


(c) 2010 Kathleen A. Acker, Ph.D.

Find the gcd(3108, 1524)

3108 =(1524) * (2) + 60

1524 = (60) * (25) + 24

60 = (24) * (2) + 12

24 = 12 * (2) + 0

Twelve is the last non-zero remainder, thus gcd(3108, 1524) = 12
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Online Class for Teach for American Program 

for students at American University

Course Description: Advanced Exploration of 

Secondary Mathematics. This course deepens 

teachers' understandings of math concepts 

and helps them understand the overall 

secondary math curriculum, as well as how 

to connect math concepts to curricular 

topics. 
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Topics spanned Fractions to Functions.

Challenge - Create an assignment that:

 Is relevant to curriculum

 Looked at a topic in-depth

 Provide the teachers an assignment to use 

with their students

 Used advantage of modern technology
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Directions:

 Suggest that students work in groups.

 Notes what prior math topic exposure up to and 

including factoring of binomials, but not necessarily 

the  quadratic formula or completing the square.

 Expects students to have used algebra tiles. 

 Give a background story was created to grab the 

attention of the students.

 Include helpful websites.

Students were able to ask for help at anytime using 

email, online chats or virtual classroom meetings.
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The problem:

You have found a room that holds many riddles. 
In order to leave you must solve one:

One square, and ten roots of the same, are equal 
to thirty-nine dirhems. That is to say, what must 
be the square which, when increased by ten of 
its own roots, amounts to 39?
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Abū ʿAbdallāh Muḥammad ibn

Mūsā al-Khwārizmī

The Compendious Book on 

Calculation by Completion 

and Balancing (al-Kitab al-

mukhtasar fi hisab al-jabr

wa'l-muqabala

This was published in the year 

825. 

A dirhem is a monetary unit.
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One square, and ten roots of the same, are 
equal to thirty-nine dirhems. That is to say, 
what must be the square which, when 
increased by ten of its own roots, amounts to 
39?

What is a root?

What is a dirhem?

How might you write this with modern notation? 

x2 + 10x = 39

25(c) 2010 Kathleen A. Acker, Ph.D.



One square, and ten roots of the same, are equal to thirty-nine 

dirhems. That is to say, what must be the square which, when 

increased by ten of its own roots, amounts to 39?

x2 + 10x = 39

How would you solve the problem?
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Guess and Check

Graphing calculator

Factoring

Quadratic formula (if known)

Completing the square (if known)
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The directions lead you to consider how to 

solve this with shapes.

http://www.youtube.com/watch?v=Ax2mIah7bkQ&feature=channel


http://nlvm.usu.edu/en/nav/frames_asid_189_g_3_t_2.html?open=activities&from=topic_t_2.html
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The directions lead you to use virtual manipulatives.

http://nlvm.usu.edu/en/nav/frames_asid_189_g_3_t_2.html?open=activities&from=topic_t_2.html
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Students were asked to represent this problem with algebra 

tiles. The initial set up might look like:
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Completing the square yields:
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The solution written:

You half the number of roots, which in the

present instance yields five. This you 

multiply by itself; the product is twenty-five. 

Add this to thirty-nine; the sum is sixty-four. 

Now take the root of this, which is eight, and 

subtract from it half the number of roots, 

which is five; the remainder is three. This is 

the root of the square which you sought for; 

the square itself is nine.
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Traditional algebraic approach for completing 

the square:

Scrap: Calculations:
2

2

2

10 39

10 25 39 25

( 5) 64

5 8

{3, 13}

x x

x x

x

x

x

 

   

 

  

 

2

10
5

2

5 25




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al-Khwārizmī classifies linear and quadratic 

equations in six forms, with solutions justified 

geometrically. 

The six cases are:

Squares equal to roots x2 = 9x

Squares equal to numbers x2 = 9

Roots equal to numbers x = 9

Squares and roots equal to numbers x2 + x = 6

Squares and numbers equal to roots x2 + 4 = 5x

Roots and numbers equal to squares x2 = 4 + 3x
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The Quadratic Formula
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Outcomes:

Students liked the assignment.

Underscored the connections between 

algebra and geometry.

Allowed for differentiated learning in the 

classroom.

Took advantage of technology.

Asked them to look for other appropriate 

digital material that could be applicable.
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Evidence of working quadratic equations in other 

cultures:

 Babylonians- Clay tablets (400 BC)

 Chinese-Nine Chapters of Mathematical Art (100 BC)

 Greeks

 Euclid’s Elements

 Apollonius (262 -190 BC) - The Conics

 Diophantus (200-284 AD) – Arithmetica
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http://aleph0.clarku.edu/~djoyce/java/e

lements/bookII/propII4.html
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http://aleph0.clarku.edu/~djoyce/java/elements/bookII/propII4.html
http://aleph0.clarku.edu/~djoyce/java/elements/bookII/propII4.html


If a straight line is cut at random, 

then the square on the whole 

equals the sum of the squares on 

the segments plus twice the 

rectangle contained by the 

segments. 
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A geometric proof:

xplusa.html

(c) 2010 Kathleen A. Acker, Ph.D. 40
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A perfect number is a positive integer that is 

equal to the sum of its proper divisors. 

For example: The proper divisors of the 

number 6 are 1, 2 and 3.

1+2+3 = 6
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Graphically, Euclid would represent number 

quantities as lines:

1 2 3

6
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What is the next perfect number?

The next perfect number is 28.

1 + 2 + 4 + 7 + 14 = 28

The first four perfect numbers are:

6, 28, 496 and 8128
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Euclid’s Elements states in Book IX, 

Proposition 36 :

“If as many numbers as we please 

beginning from a unit be set out 

continuously in double proportion, until 

the sum of all becomes a prime, and if 

the sum multiplied into the last make 

some number, the product will be 

perfect.”
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Perfect numbers can be factored into:

So consider values of p
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  12 1 *2p p

p

1

2

3

4

5

6

7

  12 1 *2p p

 2 2 12 1 *2 3(2) 6  

 3 3 12 1 *2 7(4) 28  

 5 5 12 1 *2 31(16) 496  

 7 7 12 1 *2 127(64) 8128  

Observations?

 1 1 12 1 *2 1(1) 1  

 4 4 12 1 *2 15(8) 120  

 6 6 12 1 *2 63(32) 2016  



.

If          is prime, then                 is perfect.
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p

1 1

2 3

3 7

4 15

5 31

6 63

7 127

  12 1 *2p p

 2 2 12 1 *2 3(2) 6  

 3 3 12 1 *2 7(4) 28  

 5 5 12 1 *2 31(16) 496  

 7 7 12 1 *2 127(64) 8128  

 1 1 12 1 *2 1(1) 1  

 4 4 12 1 *2 15(8) 120  

 6 6 12 1 *2 63(32) 2016  

 2 1p 

 2 1p    12 1 *2p p



Prime numbers of the 

form

are known as Mersenne

Primes, honor of 

Marin Mersenne, an 

Order of the Minims 

monk, who studied 

mathematics in the 

17th century.

2 1p 
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The search for primes has become such an 

interest that  www.mersenne.org has set up 

the GIMPS project.

GIMPS: Great Internet Mersenne Prime Search

Provides a program that you can download that 

looks for Mersenne Primes while your computer 

runs.

Imagine millions of peoples all working to find the 

next prime.

Cash Incentive.
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Primes numbers are used in:

Testing of computer hardware in quality control.

Public Key encryption: In this a message is 

encoded, locked with one key, and opened with a 

different key.   

The one most commonly used today is the RSA 

Algorithm, named from the inventors Rivest, 

Shamir and Adleman, and it uses prime numbers 

to generate the keys for public key encrytion.
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Archimedes 287-212 BC

Inventor

The Quadrature of the Parabola 
discusses 24 propositions 
regarding the underlying 
nature of parabolic segments.

Quadrature – construction of a  
square that has the same area 
of a curved shape.

Parabolic Segment is the region 
bounded by a parabola and a 
line.
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2( ) ( 3) 9,    5 0f x x x      
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Analysis: 

Q = (0, 0)

Q’ = (-5, 5)

Line QQ’: y = -x

f ’(x) = -2x -6

Solving -2 x -6= -1, x = -2.5.

P = (-2.5, 8.75) 

P and V share the same x coordinate V = (-2.5, 2.5)

d(QV) = d (Q’V)= 2.5√2

P

Q’

Q

V
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http://www.cinderella.de/tiki-index.php
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Berlinghoff, William P., Gouvêa,  Fernando Quadros, Math through 

the Ages: A gentle History for Teachers and Others. © 2004. 

Mathematical Association of America and Oxton House Publishers. 

p. 127. 
Google BooksLink: 

http://books.google.com/books?id=4ru6F85wGK4C&printsec=frontcover&dq=Math+through+the+ages:+a+gentle+histor

y+for+teachers+and+others&hl=en&ei=1tp3TOq7A8Oblgfv-

dC1Cg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CDcQ6AEwAA#v=onepage&q&f=false

C. Johnson, On the Mathematics of Geometry in my Abstract 

Paintings, Leonardo 5, 1972.
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 http://www-history.mcs.st-and.ac.uk/Biographies/Al-

Khwarizmi.html 

 http://nlvm.usu.edu/en/nav/frames_asid_189_g_3_t_2.html?ope

n=activities&from=topic_t_2.html 

 http://aleph0.clarku.edu/~djoyce/java/elements/bookII/propII4

.html 

 http://www-history.mcs.st-and.ac.uk/PictDisplay/Al-

Khwarizmi.html 

 http://www-history.mcs.st-

and.ac.uk/PictDisplay/Archimedes.html 

 http://www-history.mcs.st-and.ac.uk/PictDisplay/Euclid.html

 http://jeff560.tripod.com/ 

 http://www-history.mcs.st-

and.ac.uk/Mathematicians/Archimedes.html

 http://graph-plotter.cours-de-math.eu/ 
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 http://www.personal.kent.edu/~rmuhamma/Mathematics/maths

oftware.html

 http://www.cinderella.de/tiki-index.php 

 http://www.math.ubc.ca/~cass/Euclid/book1/byrne-48.html 

 http://aleph0.clarku.edu/~djoyce/java/elements/bookIX/propIX

36.html

 http://www-history.mcs.st-

and.ac.uk/Biographies/Mersenne.html

 http://www.mersenne.org

 http://www.acm.org/fcrc/PlenaryTalks/rivest.pdf

 http://www-history.mcs.st-and.ac.uk/PictDisplay/Mersenne.html

 http://jeff560.tripod.com/images/pythag3.jpg
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 The Crockett Johnson Homepage
 http://www.ksu.edu/english/nelp/purple/

 Peggy Kidwell
 Director of the Mathematics Collection

 National Museum of American History

 We wish to thank the Smithsonian Institution for 
allowing us to use digital images of Crockett 
Johnson’s paintings.
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Mathematically we write:

If 

Then

Since:

We can write:

And thus the proposition can be rewritten as: 

If is prime, 

then is perfect

2 1

prime

1 2 2 ... 2p   

 2 1 1

prime

perfect

1 2 2 ... 2 *2p p    

2 11 2 2 ... 2 2 1p p     
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  1

prime

perfect

2 1 *2p p

2 1p 

  12 1 *2p p



 STOP
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